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Consumer 
Personal 
Sensing

Sensor-driven Cities, 
Enterprises & Organizations
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Mobile Health

Digital Assistants Quantified Enterprise

Urban Sensing



Sensors Resources
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Image Data

Audio Data

Inertial Data

{walking, running, sitting} 

{music, conversation, male voice} 

{shoes, subway, coffee cup} 

Sensor Inference 
Pipelines 

Machine Learning is the core unifying building 

block that 

spans all Mobile, Wearable, and Embedded Systems 
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Computation

{stressed, not stressed} 
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AMBITION: Overcoming the system resource 

barriers that separate state-of-the-art ML and 

constrained classes of computing

Next Frontier of Machine 

Learning

(1) Accuracy/Robustness

(2) Run Anywhere on Anything

Mobile and Embedded Deep 
Learning
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• Enabling state-of-the-art techniques across 
all systems 

• USER PRIVACY

• No need for developing a range of simple 
and complex ML models

• Real-time Execution (without dependency on network 

connectivity)

• Model Size (think: updating a mobile app if model alone is 

500MB)

ML Efficiency drives device 
capabilities



Graphic Ack. OpenAI

ML Efficiency is a 
fundamental 
crisis







Many heuristics 
developed to determine 
which nodes to prune

Node Pruning

Example: Prune nodes with 
absolute weights below a 
threshold 

Slide ACK Anirudh Koul Song Han, Jeff Pool, John Tran, William J. Dally, “Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015



Slide ACK Song Han

Number of synapses in the human brain during child development

Christopher A Walsh, Peter Huttenlocher (1931 – 2013). Nature, 502(7470):172-172, 2013. 

Grounding in Nature?



Notable Additional 

Innovations

1st Proof-of-Concept DL on 
Mobile [HotMobile ‘15]

DL Smartwatch Activity 
Recognition
[WristSense ‘16] Best Paper

DeepEar (1st DSP-based DL General 
Audio Sensing) [UbiComp ‘15] Best 
Paper

1st time: Multiple DL Vision Models on 
Wearable
[MobiSys ‘17]

1st time: VGG executing directly on a 
commodity SmartWatch

1st time: Smartphone-scale DL on embedded 
processors (e.g., M0/M3) [SenSys ‘16]

2015

2016

2017

2014

Hardware Innovations

Algorithmic & Architecture 
Advances• Node Pruning 

• SqueezeNet (50x AlexNet

reduction)

• Low Precision Results (8-bit etc)

• Binarization of Networks

• MobileNet, Small-footprint Nets

• Diannao and Cnvlutin2

• Front-ends e.g., SNPE - Qualcomm

• TPU, FPGAs / Hybrids

• Analog from Digital Approaches

• Spiking H/W & Approx. Compute

Starting in Late 2014: Mobile & 
Embedded DL



Notable Additional 

Innovations

1st Proof-of-Concept DL on 
Mobile [HotMobile ‘15]

DL Smartwatch Activity 
Recognition
[WristSense ‘16] Best Paper

DeepEar (1st DSP-based DL General 
Audio Sensing) [UbiComp ‘15] Best 
Paper

1st time: Multiple DL Vision Models on 
Wearable
[MobiSys ‘17]

1st time: VGG executing directly on a 
commodity SmartWatch

1st time: Smartphone-scale DL on embedded 
processors (e.g., M0/M3) [SenSys ‘16]

2015

2016

2017

2014

Hardware Innovations

Algorithmic & Architecture 
Advances• Node Pruning 

• SqueezeNet (50x AlexNet

reduction)

• Low Precision Results (8-bit etc)

• Binarization of Networks

• MobileNet, Small-footprint Nets

• Diannao and Cnvlutin2

• Front-ends e.g., SNPE - Qualcomm

• TPU, FPGAs / Hybrids

• Analog from Digital Approaches

• Spiking H/W & Approx. Compute

Starting in Late 2014: Mobile & 
Embedded DL



14

Google SpeakerID

Model (FC Layers)

ARM Cortex M3 ARM Cortex M0

32 KB 16 KB

2-4% degradation in accuracy

Early 2016: Deep Learning on 
Microcontrollers

Sourav Bhattacharya, Nicholas Lane, “Sparsifying Deep Learning Layers for Constrained Resource Inference on Wearables", SenSys 2016





Obsession with 
Model Compression



The first 50x gains were 
“easy.” 
But where will I find my next 
50x?
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Fundamental On-Device ML Challenges

#2: Automated Specialization

#3: Memory and Compute 
Sharing

Rethinking the complete 

stack (and the learning 

algorithms)

#1: Modular Low-data Movement Learning 
Algorithms
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Vanilla AutoML
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#2 Automated Specialization 

Vanilla AutoML
output

DL Compilers

Semi Hand-built 
Examples

Nicholas Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro, Fahim Kawsar, 
“DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices", IPSN 2016



#2 Automated Specialization 

AMBITION: Automated offline generation of ML 
models specialized for a target chip/platform that 
rivals hand-design

Hardware 
Specialization

• Combine: Optimization, AutoML and Code-Gen
• Model deeply SoC behavior, beyond constraint 

searching due to memory and FLOPS
• Automation allows for: per-model per-task per-device
• Integrate hooks and meta-data for runtime efficiency
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Qualcomm 

Snapdragon 800

GMM

[full pipeline]

GMM

[model only]

DNN

[full pipeline]

DNN 

[model only]

DSP -8.8x -8.6x -4.5x -4.0x

DSP-m -3.2x -2.5x -2.1x -1.5x

CPU 1.0x (1573ms) 1.0x (1472ms) 1.0x (501ms) 1.0x (490ms)

CPU-m 3.0x 3.4x 2.8x 2.9x

n-GPU 3.1x 3.6x 1.8x 1.8x

a-GPU 8.2x 16.2x 13.5x 21.3x

Audio Processing Pipelines

Platform

Automated Specialization Example: Huge Drop in 
Audio Sensing Latency under Automated Mobile GPU 
Tuning 

Petko Georgiev, Nicholas Lane, Cecilia Mascolo, David Chu, “Accelerating Mobile Audio Sensing
Algorithms through On-Chip GPU Offloading", MobiSys 2017



Automated Specialization Example: Joint 
Optimization of Accelerator Design and Deep 
Neural Architecture 

vs

conventional  
approach

joint  opt imizat ion



Automated Specialization Example: Joint 
Optimization of Accelerator Design and Deep 
Neural Architecture 

Mohamed Abdelfattah, Lukasz Dudziak, Thomas Chau, Hyeji Kim, Royson Lee, Nicholas D. Lane, “Best of 
Both Worlds: AutoML Codesign of a CNN and its FPGA Accelerator", under submission ISFPGA ‘20

Zync Ultrascale+Platform



Automated Specialization Example: Joint 
Optimization of Accelerator Design and Deep 
Neural Architecture 

Mohamed Abdelfattah, Lukasz Dudziak, Thomas Chau, Hyeji Kim, Royson Lee, Nicholas D. Lane, “Best of 
Both Worlds: AutoML Codesign of a CNN and its FPGA Accelerator", under submission ISFPGA ‘20

Zync Ultrascale+Platform
prior SOA HWNAS

Accuracy 92.8% 93.6%

Latency 51ms 42ms

HW Area 170 130



#3 Memory and Compute Sharing

? ? ?



#3 Memory and Compute Sharing

Faces Cars Elephants



#3 Memory and Compute Sharing

ML-aware 
Systems
Components

Trained Models

Runtime Resources

• Schedulers
• Partitioned CPU/xPU Execution (including offloading)
• Memory Layout and Context Switching
• Micro-kernels for management of NPUs etc.
• Initialization of Accelerators and Hetero Compute

AMBITION: Maximize runtime resource utilization 
through the ML-aware sharing and scheduling 
memory & compute  



Qualcomm 

Snapdragon 400

Single Model Avg. Multi-Task Model

Speaker Identification 85.1% 84.7 (±1.2%)

Emotion Recognition 83.4% 85.8 (±1.6%)

Stress Detection 85.4% 83.3 (±2.0%)

Ambient Scene Analysis 84.8% 83.7 (±1.0%)

Single Shared All

3 layer 
256 nodes ea.

0.73 MB 2.6 MB 9.2 MB

3 layer 
512 nodes ea.

0.80 MB 2.7 MB 9.4 MB

3 layer 
1024 nodes ea.

2.92 MB 10.4 MB 36.8 MB

Petko Georgiev, Sourav Bhattacharya, Nicholas D Lane, Cecilia Mascolo, “Low-resource multi-task audio 
sensing for mobile and embedded devices via shared deep neural network representations", IMWUT ‘17

Sharing Resource Example: Scaling to Multiple 
Audio Tasks w/ Negligible Loss in Accuracy



Sharing Resource Example: Exposing Cloud 
Capacity w/ Device ML by Dynamic Quantization 
& Compression  

• Estimated {Device, Network, Cloud} Latency

• Intensity of Compression and Quantization

Decision Factors

CloudOn-Device



Sharing Resource Example: Exposing Cloud 
Capacity w/ Device ML by Dynamic Quantization 
& Compression  

• Estimated {Device, Network, Cloud} Latency

• Intensity of Compression and Quantization

Decision Factors

CloudOn-Device

Dynamic Compression and 
Activation Quantization



Sharing Resource Example: Exposing Cloud 
Capacity w/ Device ML by Dynamic Quantization 
& Compression  

Mario Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I Venieris, Nicholas D. Lane, “Dyno: Dynamic Onloading of Deep
Neural Networks from Cloud to Device", under submission SysML ‘20

ResNet

MobileNet



Sharing Resource Example: Exposing Cloud 
Capacity w/ Device ML by Dynamic Quantization 
& Compression  

Mario Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I Venieris, Nicholas D. Lane, “Dyno: Dynamic Onloading of Deep
Neural Networks from Cloud to Device", under submission SysML ‘20

ResNet

MobileNet

20x reduction



#1 Enabling devices to go far beyond classification 

#2 Key contributions to the advancement of ML 

broadly

Predictions for the ML Efficiency Revolution
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{ step count, 
sleep hours } 

Discriminative Task

On-Device AI goes far beyond 
classification 

#1 ML Efficiency Prediction 
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Reasoning

Common Sense

Understanding

Perception (Discriminative)
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Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cognitive

Mobile

Stack



42

Reasoning

Common Sense

Understanding

Perception (Discriminative)

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cognitive

Mobile

Stack



43

Reasoning

Common Sense

Understanding

Perception (Discriminative)

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cognitive

Mobile

Stack

480,000 MIPS125 MIPS



#2 ML Efficiency Prediction 
SOA Accuracy will come from Efficient 

Models

EfficientNet – ICML ‘19

Impact of Efficiency

• Faster exploration

• Making feasible 
powerful “intractable” 
approaches

• More data

• Larger architectures

• New tasks 



#2 ML Efficiency Prediction 

Impact of Efficiency

• Faster exploration

• Making feasible 
powerful “intractable” 
approaches

• More data

• Larger architectures

• New tasks 

ResNet-18 ResNet-34 SqueezeNet

DBF layers 91.15% 92.46% 91.16%

non DBF layers 91.02% 92.36% 91.33%

DBFNet – IJCAI ‘18

DBFNetXNORBConnectResNet AlexNet

SOA Accuracy will come from Efficient 
Models
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Thanks!
Questions?

@niclane7

http://mlsys.cs.ox.ac.ukNicholas D. Lane

• “An Empirical study of Binary Neural Networks' Optimisation” – ICLR 2019

• “EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices” – EMDL 2019

• “MobiSR: Efficient On-Device Super-Resolution through Heterogeneous Mobile Processors” – MobiCom 2019

• “Mic2Mic: using cycle-consistent generative adversarial networks to overcome microphone variability in speech systems” – IPSN 2019

• “The deep (learning) transformation of mobile and embedded computing” – IEEE Computer Magazine, 51 (5), 2018

• “BinaryCmd: Keyword Spotting with Deterministic Binary Basis” – SysML 2018

• “Deterministic binary filters for convolutional neural networks” – IJCAI 2018

• “Multimodal Deep Learning for Activity and Context Recognition” – UbiComp 2018

• “Accelerating Mobile Audio Sensing Algorithms through On-Chip GPU Offloading” – MobiSys 2017

• “Squeezing Deep Learning into Mobile and Embedded Devices” – IEEE Pervasive Magazine, 16 (3), 2017

• “Cross-modal recurrent models for weight objective prediction from multimodal time-series data” – Pervasive Health 2018

• “Low-resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared Deep Neural Network Representations” – UbiComp 2017

• “DeepEye: Resource Efficient Local Execution of Multiple Deep Vision Models using Wearable Commodity Hardware” – MobiSys 2017

• “Sparsifying Deep Learning Layers for Constrained Resource Inference on Wearables” – SenSys 2016

• “X-CNN: Cross-modal convolutional neural networks for sparse datasets” – SSCI 2016

• “DXTK: Enabling resource-efficient deep learning on mobile and embedded devices with the deepx toolkit” – MobiCASE 2016

• “LEO: Scheduling sensor inference algorithms across heterogeneous mobile processors and network resources” – MobiCom 2016

• “From Smart to Deep: Robust Activity Recognition on Smartwatches using Deep Learning” – WristSense 2016

• “Deepx: A software accelerator for low-power deep learning inference on mobile devices”— IPSN 2016

• “An early resource characterization of deep learning on wearables, smartphones and internet-of-things devices” – IoTApp 2015

• “Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning” – UbiComp 2015

• “Can Deep Learning Revolutionize Mobile Sensing?” – HotMobile 2015

Select Publications


