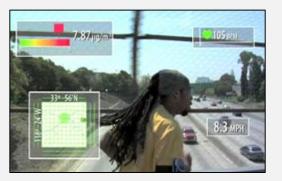


SAMSUNG

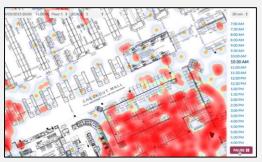
Samsung AI Forum Seoul, South Korea Tuesday 5th November 2019

The Deep (Learning) Transformation of Mobile and Embedded Computing



Mobile Health

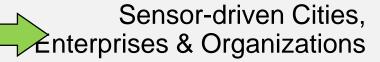
Digital Assistants

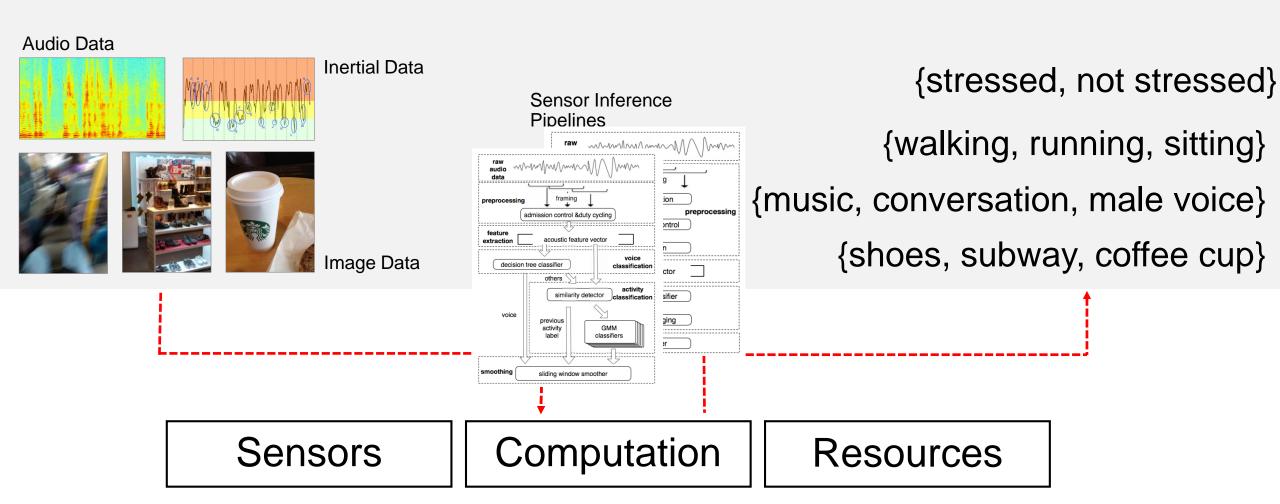


Quantified Enterprise

Urban Sensing

Consumer Personal Sensing



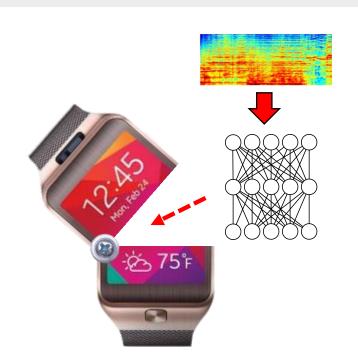


Machine Learning is *the* core unifying building block that

chancall Mobile Wearable and Embedded Systems

Mobile and Embedded Deep Learning

AMBITION: Overcoming the system resource barriers that separate state-of-the-art ML and constrained classes of computing

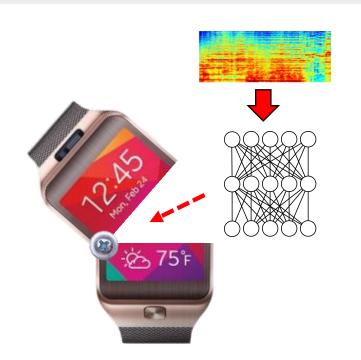


Next Frontier of Machine Learning

- (1) Accuracy/Robustness
- (2) Run Anywhere on Anything

Mobile and Embedded Deep Learning

AMBITION: Overcoming the system resource barriers that separate state-of-the-art ML and constrained classes of computing



Next Frontier of Machine Learning

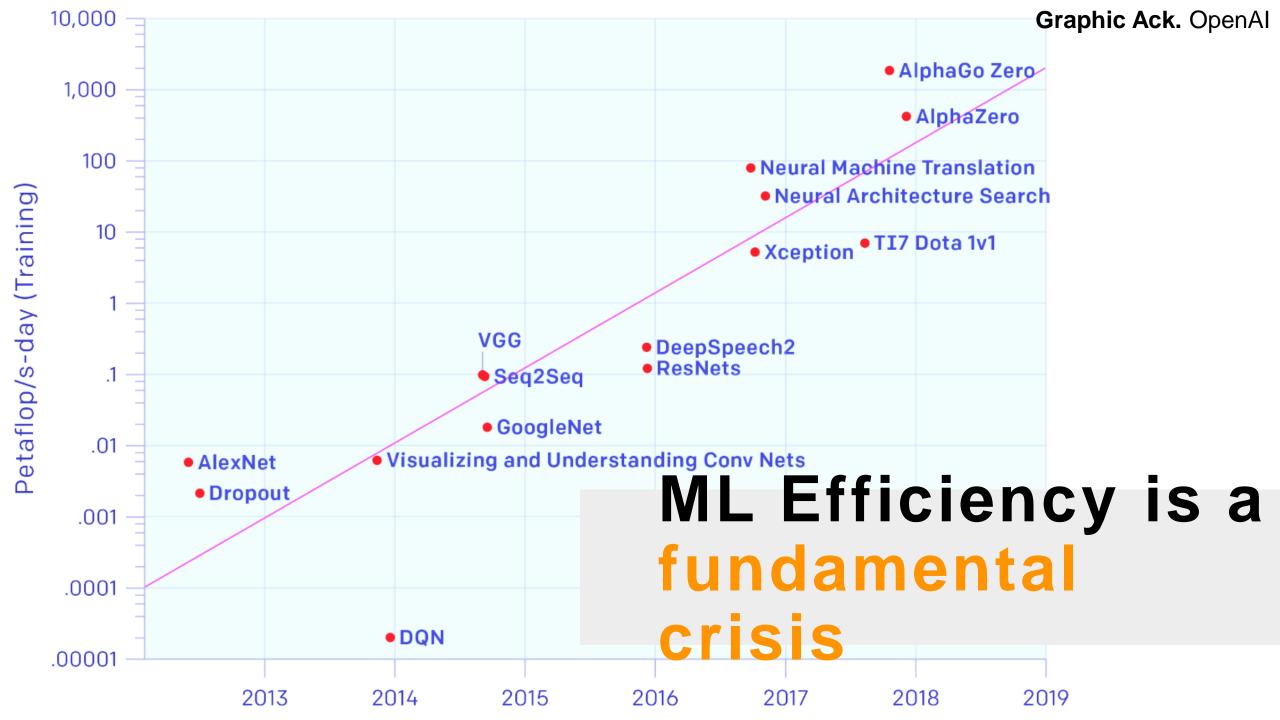
- (1) Accuracy/Robustness
- (2) Run Anywhere on Anything

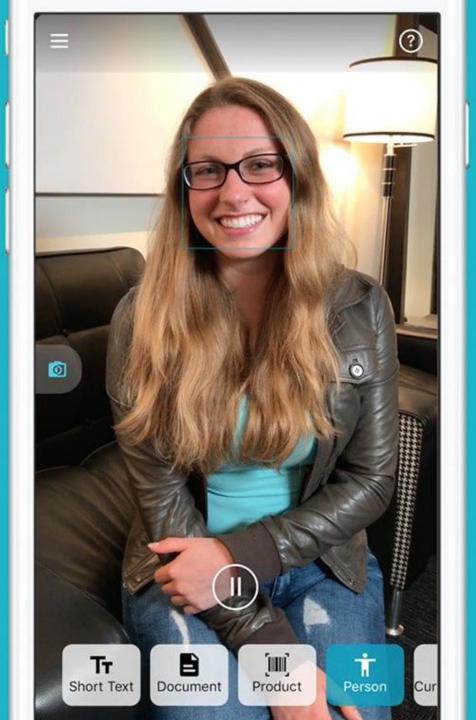
ML Efficiency drives device capabilities

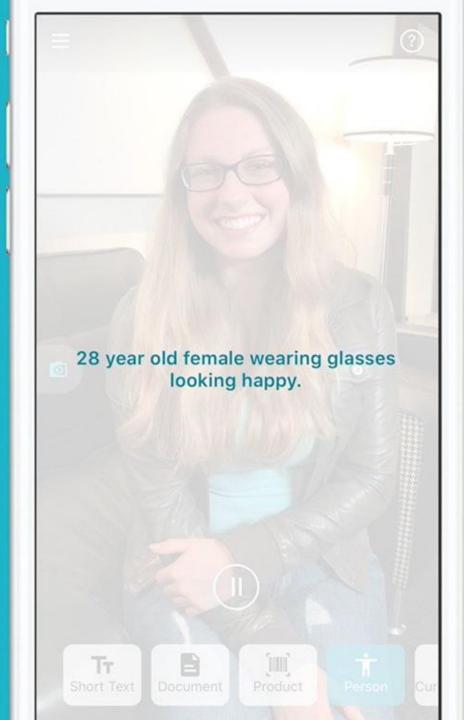
 Enabling state-of-the-art techniques across all systems

• USER PRIVACY

- No need for developing a range of simple and complex ML models
- Real-time Execution (without dependency on network connectivity)
- Model Size (think: updating a mobile app if model alone is 500MB)

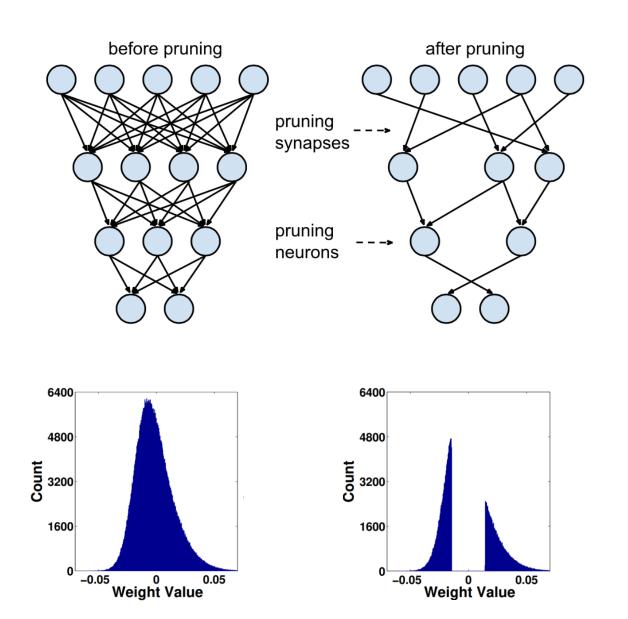






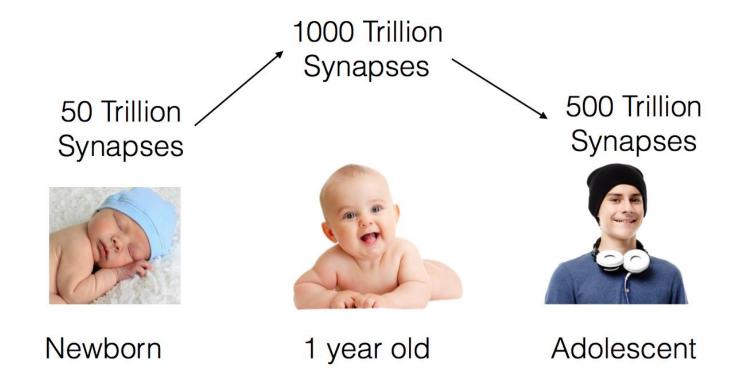
Node Pruning

Many heuristics developed to determine which nodes to prune *Example:* Prune nodes with absolute weights below a threshold

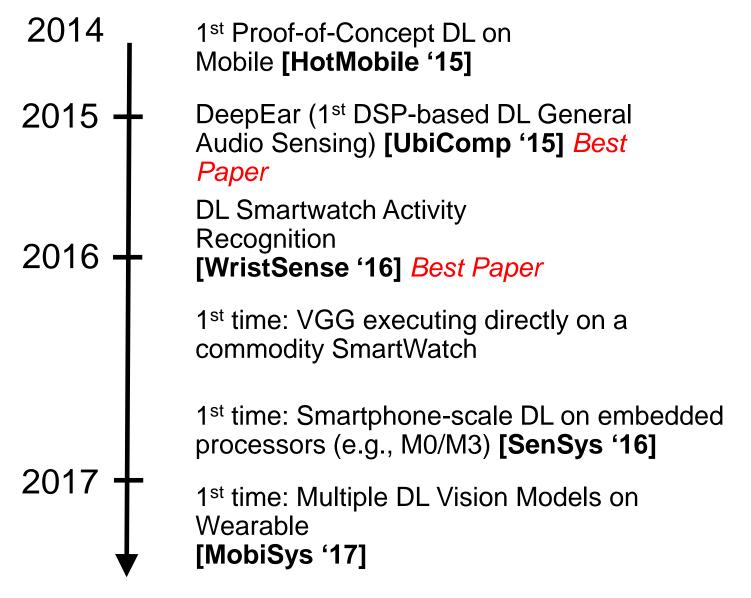


Grounding in Nature?

Number of synapses in the human brain during child development



Starting in Late 2014: Mobile & Embedded DL

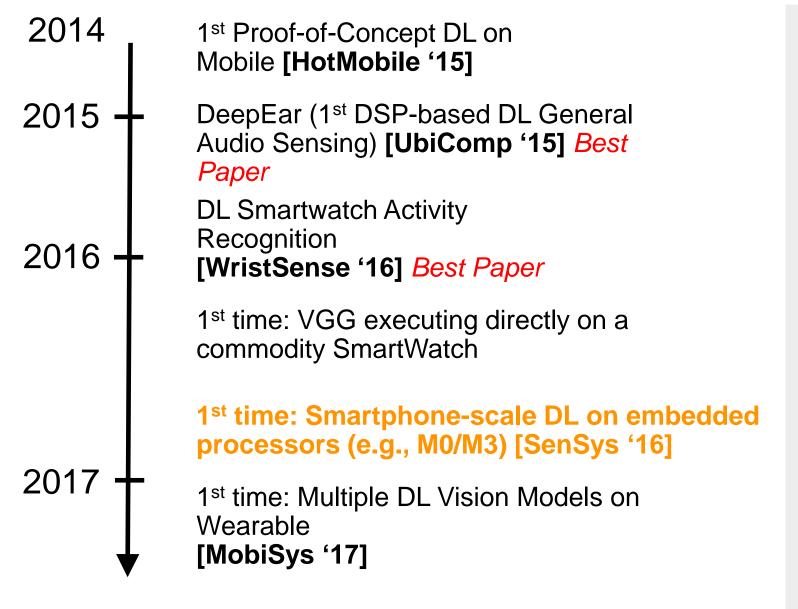


Notable Additional Innovations

Algorithmic & Architecture
Advances

- Node Pruning
- SqueezeNet (50x AlexNet reduction)
- Low Precision Results (8-bit etc)
- Binarization of Networks
- MobileNet, Small-footprint Nets Hardware innovations
- Diannao and Cnvlutin2
- Front-ends e.g., SNPE Qualcomn
- TPU, FPGAs / Hybrids
- Analog from Digital Approaches
- Spiking H/W & Approx. Compute

Starting in Late 2014: Mobile & Embedded DL

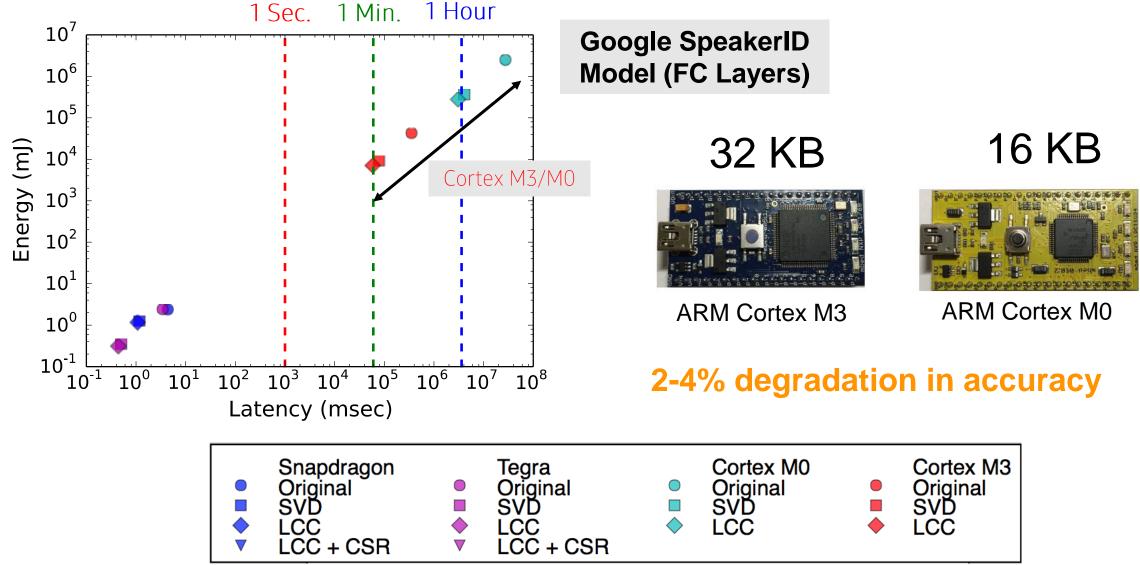


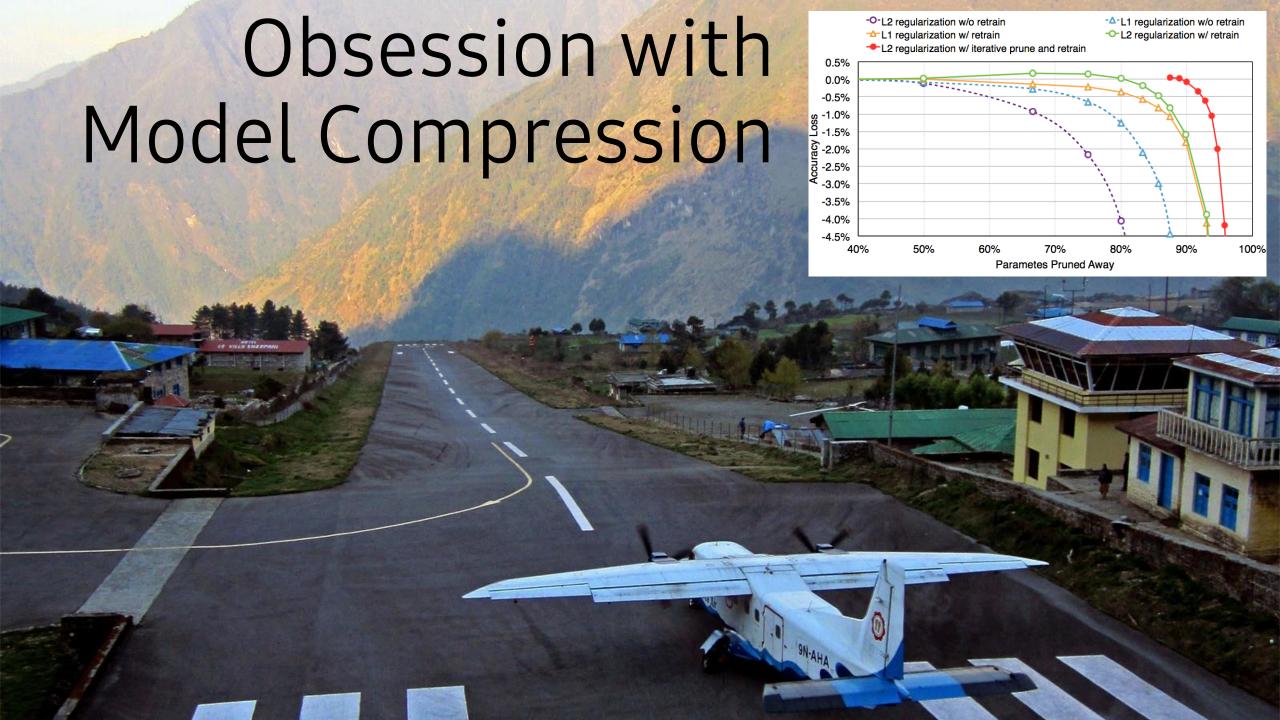
Notable Additional Innovations

Algorithmic & Architecture
Advances

- Node Pruning
- SqueezeNet (50x AlexNet reduction)
- Low Precision Results (8-bit etc)
- Binarization of Networks
- MobileNet, Small-footprint Nets Hardware innovations
- Diannao and Cnvlutin2
- Front-ends e.g., SNPE Qualcomn
- TPU, FPGAs / Hybrids
- Analog from Digital Approaches
- Spiking H/W & Approx. Compute

Early 2016: Deep Learning on Microcontrollers



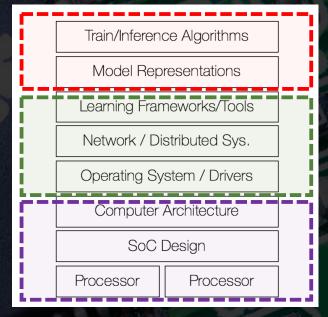


Fundamental On-Device ML Challenges

#1: Modular Low-data Movement Learning Algorithms

#2: Automated Specialization

#3: Memory and Compute Sharing

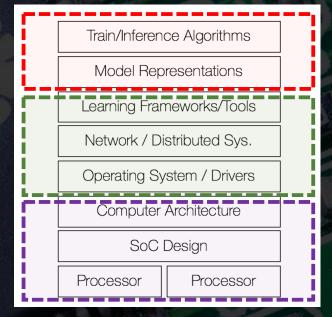


Rethinking the complete stack (and the learning algorithms)

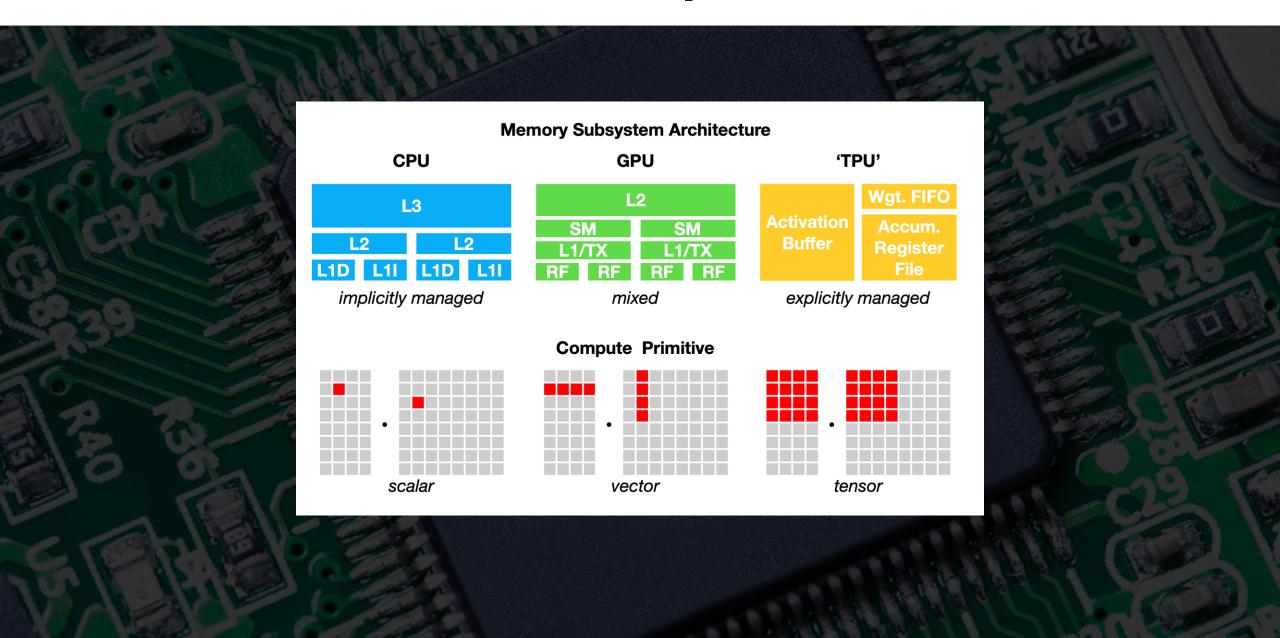
Fundamental On-Device ML Challenges

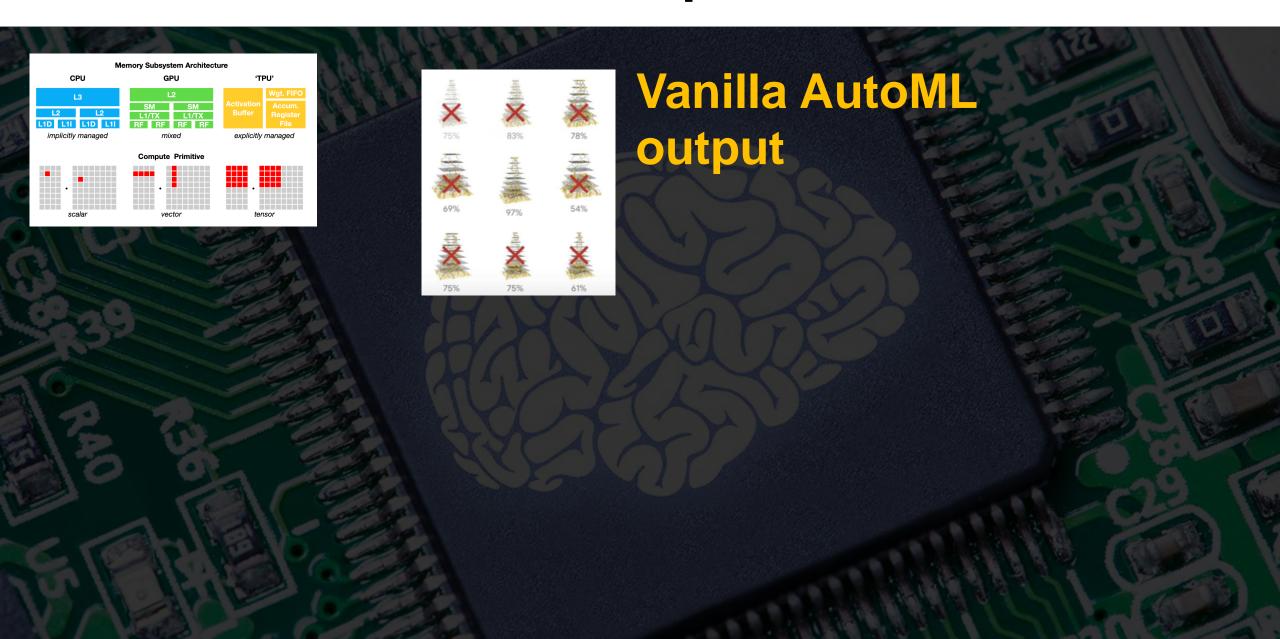
#2: Automated Specialization

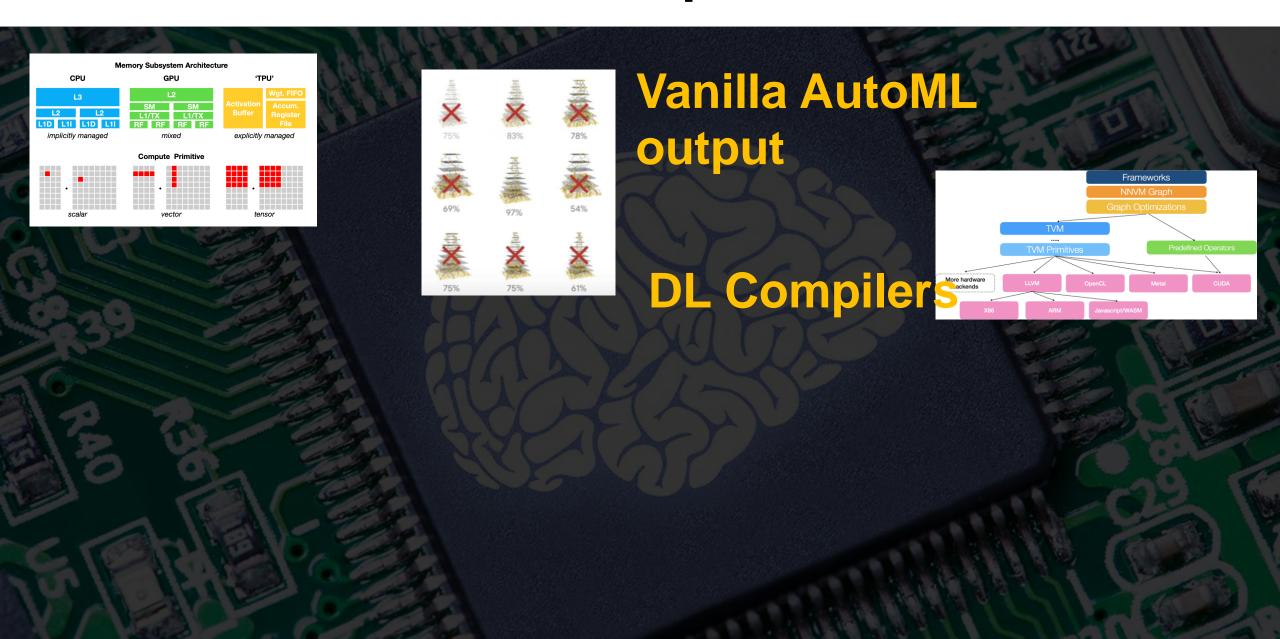
#3: Memory and Compute Sharing

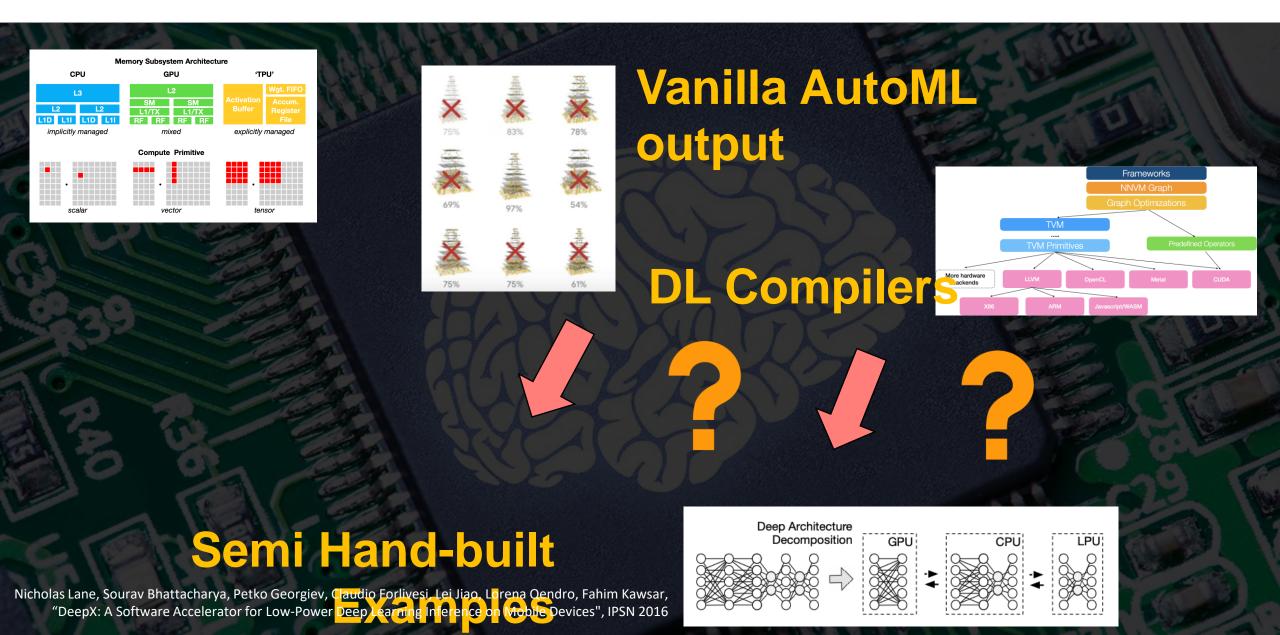


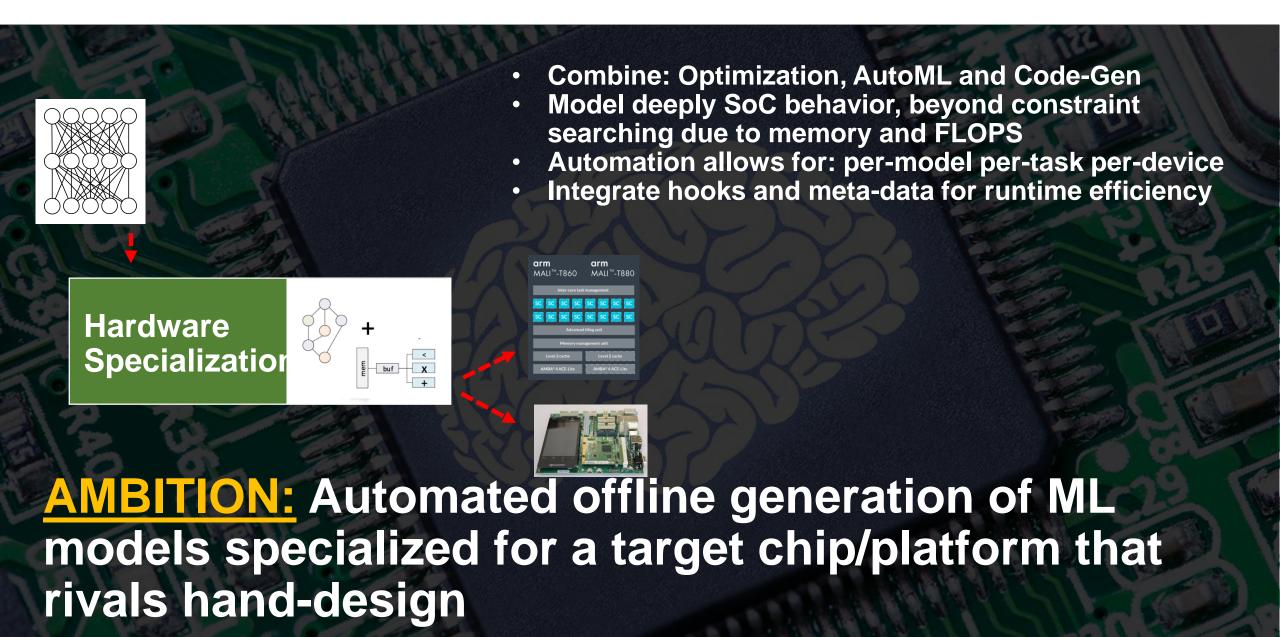
Rethinking the complete stack (and the learning algorithms)











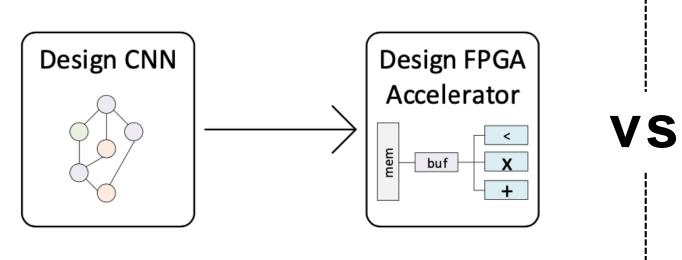
Automated Specialization Example: Huge Drop in Audio Sensing Latency under Automated Mobile Glanning Audio Processing Pipelines

	GMM	GMM	DNN	DNN
	[full pipeline]	[model only]	[full pipeline]	[model only]
DSP	-8.8x	-8.6x	-4.5x	-4.0x
DSP-m	-3.2x	-2.5x	-2.1x	-1.5x
CPU	1.0x (1573 <i>ms)</i>	1.0x (1472 <i>ms)</i>	1.0x (501 <i>ms)</i>	1.0x (490 <i>ms)</i>
CPU-m	3.0x	3.4x	2.8x	2.9x
<i>n-</i> GPU	3.1x	3.6x	1.8x	1.8x
a-GPU	8.2x	16.2x	13.5x	21.3x

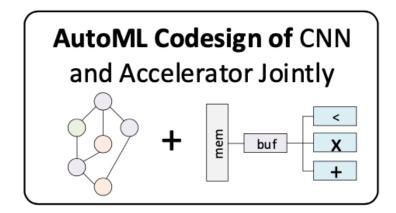
Petko Georgiev, Nicholas Lane, Cecilia Mascolo, David Chu, "Accelerating Mobile Audio Sensing Algorithms through On-Chip GPU Offloading", MobiSys 2017

Platform
Qualcomm
Snapdragon 800

Automated Specialization Example: Joint Optimization of Accelerator Design and Deep Neural Architecture

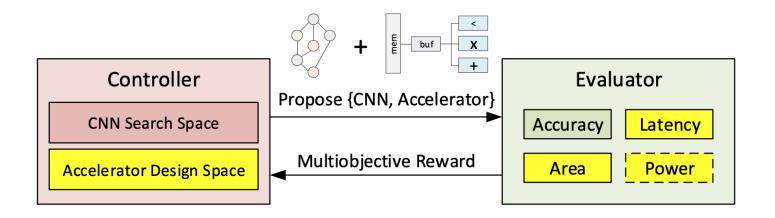


conventional approach

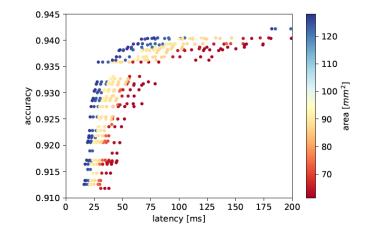


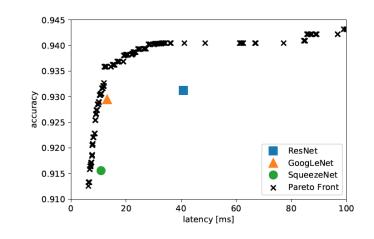
joint optimization

Automated Specialization Example: Joint Optimization of Accelerator Design and Deep Neural Architecture



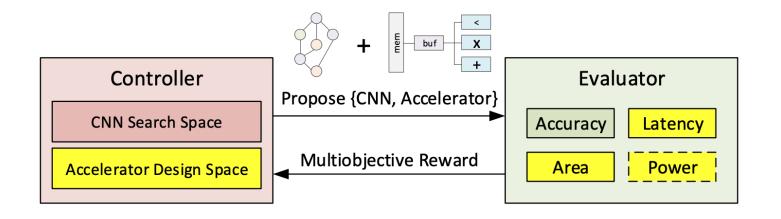
PlatformZync Ultrascale+





Mohamed Abdelfattah, Lukasz Dudziak, Thomas Chau, Hyeji Kim, Royson Lee, Nicholas D. Lane, "Best of Both Worlds: AutoML Codesign of a CNN and its FPGA Accelerator", *under submission ISFPGA '20*

Automated Specialization Example: Joint Optimization of Accelerator Design and Deep Neural Architecture

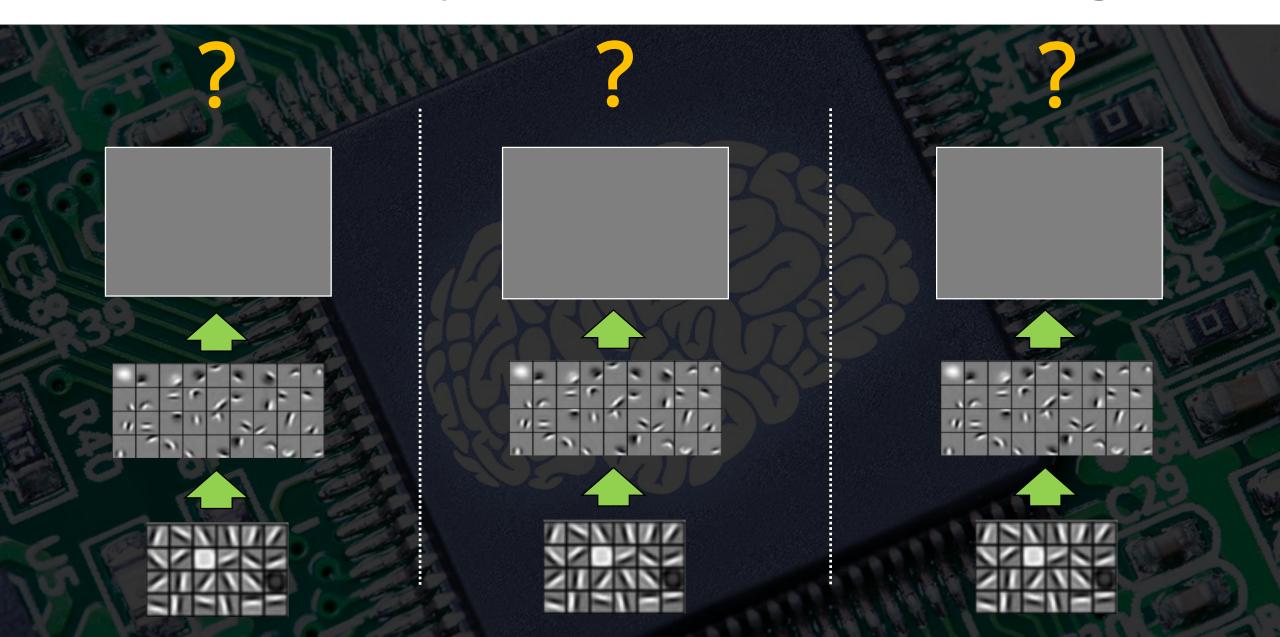


PlatformZync Ultrascale+

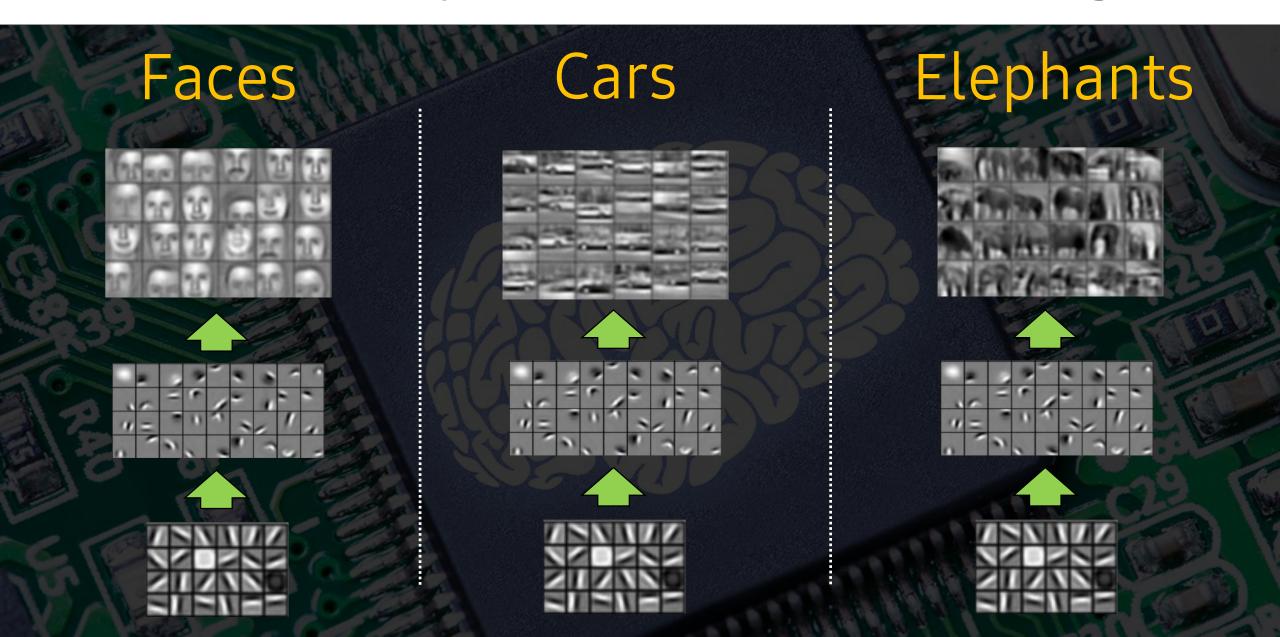
	prior SOA	HWNAS
Accuracy	92.8%	93.6%
Latency	51ms	42ms
HW Area	170	130

Mohamed Abdelfattah, Lukasz Dudziak, Thomas Chau, Hyeji Kim, Royson Lee, Nicholas D. Lane, "Best of Both Worlds: AutoML Codesign of a CNN and its FPGA Accelerator", *under submission ISFPGA '20*

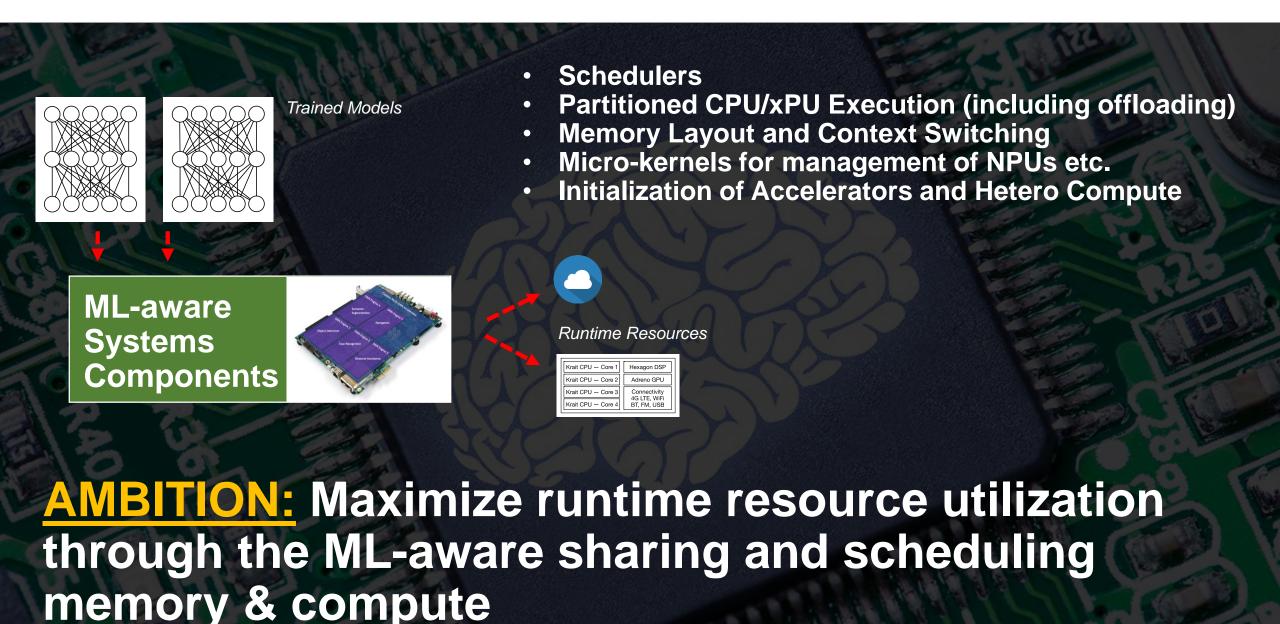
#3 Memory and Compute Sharing



#3 Memory and Compute Sharing



#3 Memory and Compute Sharing

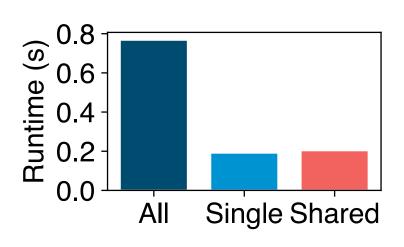


Sharing Resource Example: Scaling to Multiple Audio Tasks w/ Negligible Loss in Accuracy

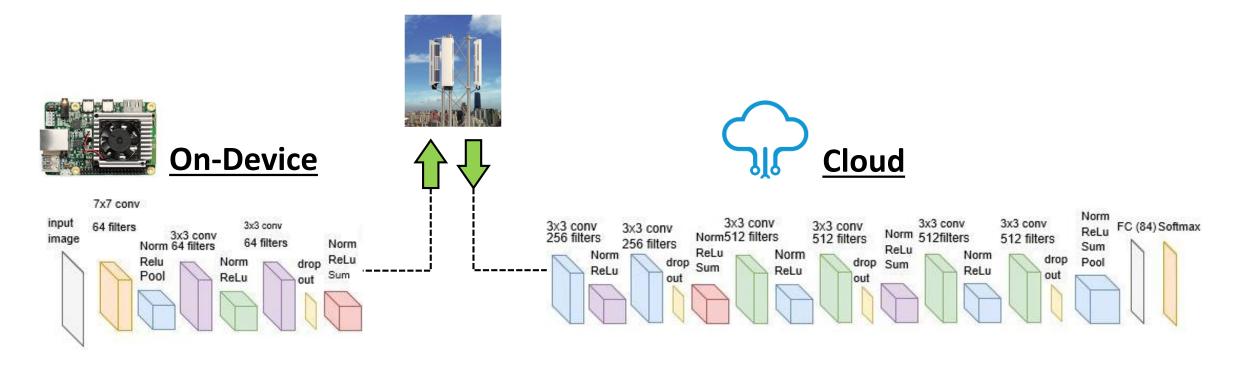
Qualcomm Snapdragon 400

	Single Model	Avg. Multi-Task Model
Speaker Identification	85.1%	84.7 (±1.2%)
Emotion Recognition	83.4%	85.8 (±1.6%)
Stress Detection	85.4%	83.3 (±2.0%)
Ambient Scene Analysis	84.8%	83.7 (±1.0%)

	Single	Shared	All
3 layer 256 nodes ea.	0.73 MB	2.6 MB	9.2 MB
3 layer 512 nodes ea.	0.80 MB	2.7 MB	9.4 MB
3 layer 1024 nodes ea.	2.92 MB	10.4 MB	36.8 MB

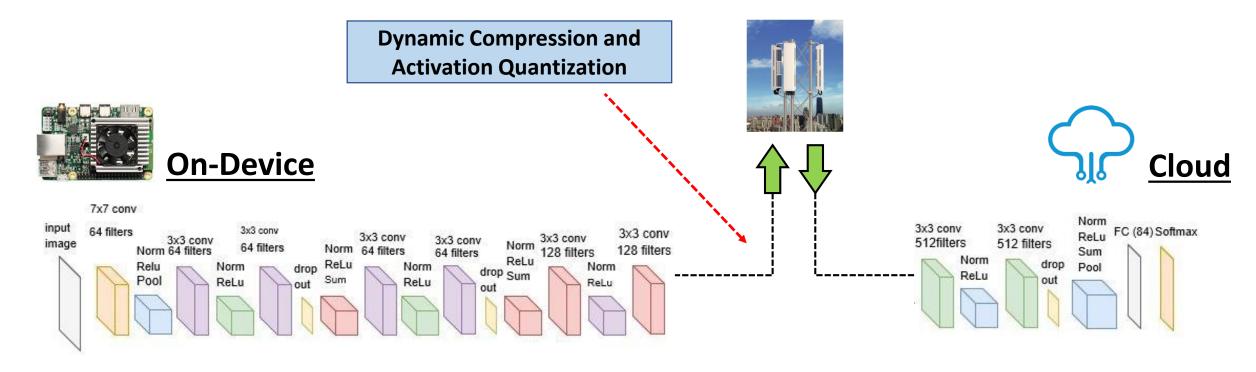


Sharing Resource Example: Exposing Cloud Capacity w/ Device ML by Dynamic Quantization & Compression



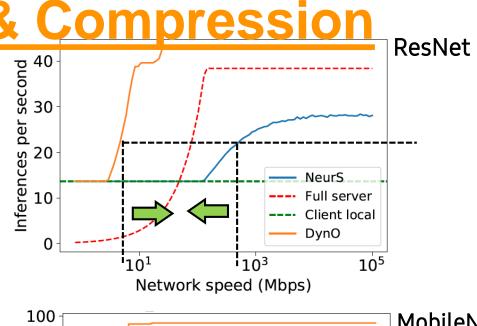
- **Decision Factors**:
- Estimated (Device, Network, Cloud) Latency
- Intensity of Compression and Quantization

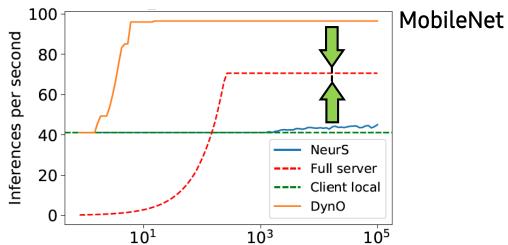
Sharing Resource Example: Exposing Cloud Capacity w/ Device ML by Dynamic Quantization & Compression



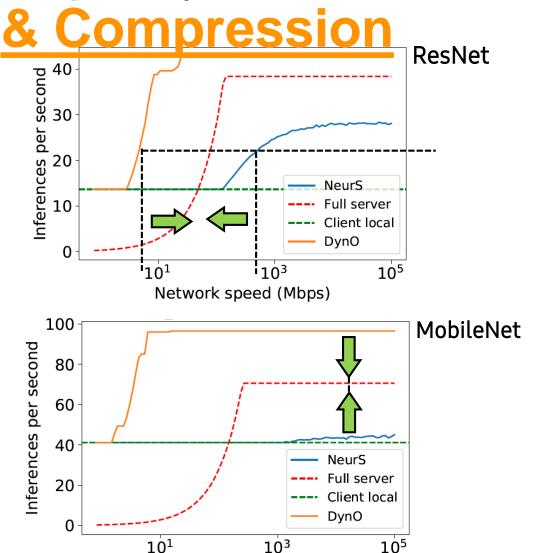
- **Decision Factors** Estimated {Device, Network, Cloud} Latency
 - Intensity of Compression and Quantization

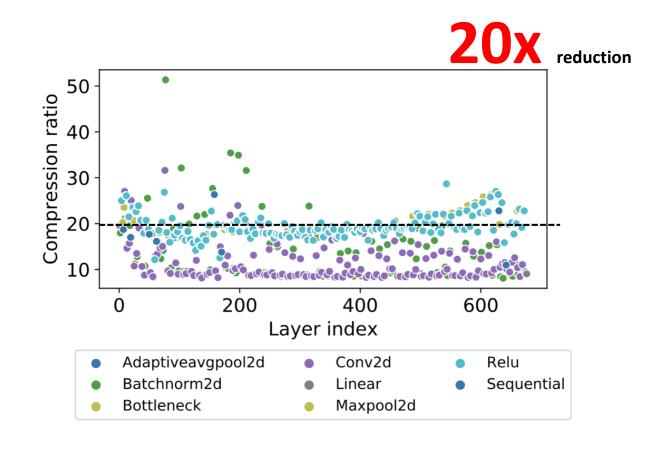
Sharing Resource Example: Exposing Cloud Capacity w/ Device ML by **Dynamic Quantization**



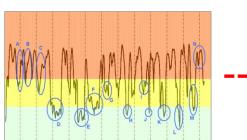


Sharing Resource Example: Exposing Cloud Capacity w/ Device ML by Dynamic Quantization





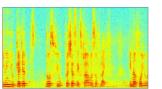
Predictions for the ML Efficiency Revolution #1 Enabling devices to go far beyond classification #2 Key contributions to the advancement of ML broadly

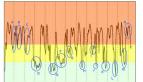


Discriminative Task

{ step count, sleep hours }

#1 ML Efficiency Prediction Al goes far beyond classification

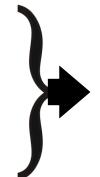




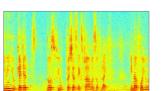
Common Sense

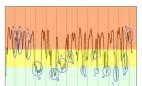
Understanding

Perception (Discriminative)



Cognitive Mobile Stack





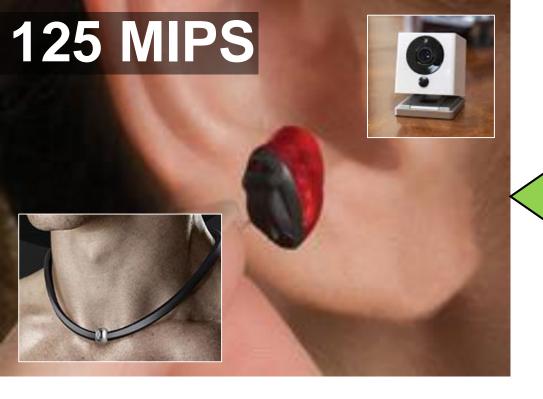
Reasoning

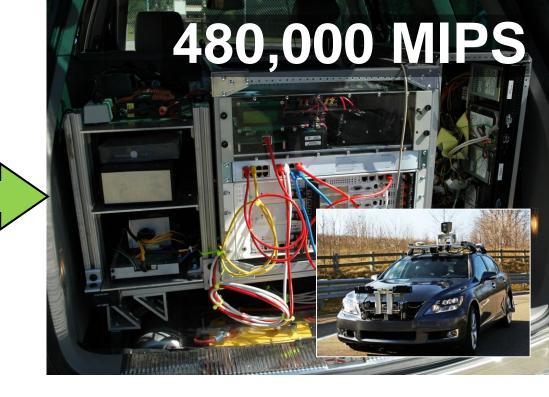
Common Sense

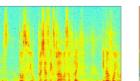
Understanding

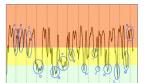
Perception (Discriminative)

Cognitive Mobile Stack







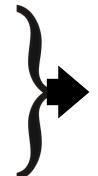


Reasoning

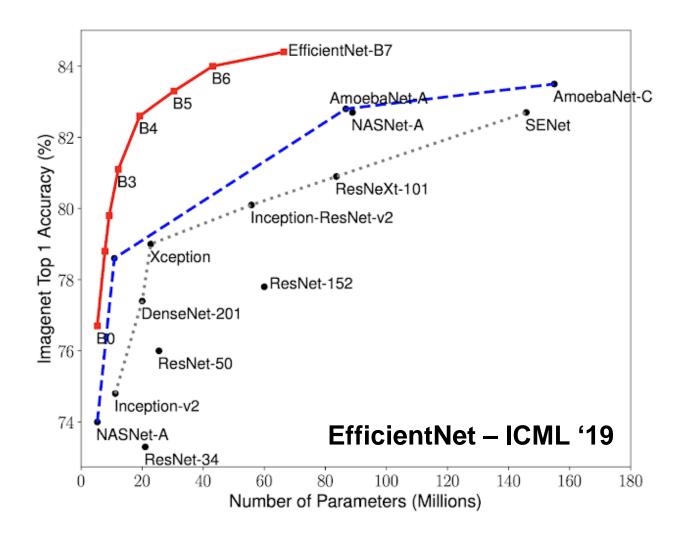
Common Sense

Understanding

Perception (Discriminative)



Cognitive Mobile Stack



Impact of Efficiency

- Faster exploration
- Making feasible powerful "intractable" approaches
- More data
- Larger architectures
- New tasks

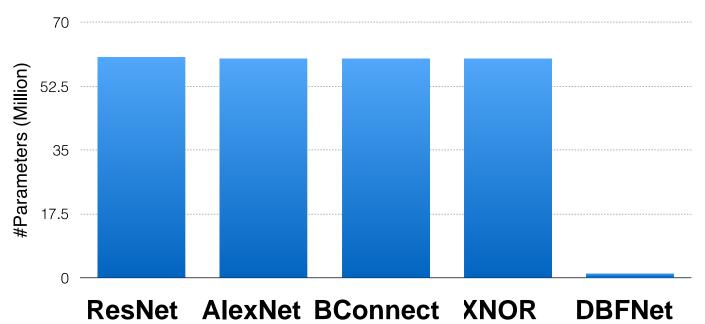
*SOA Accuracy will come from Efficient

DBF layers

non DBF layers

ResNet-18	ResNet-34	SqueezeNet
91.15%	92.46%	91.16%
91.02%	92.36%	91.33%

DBFNet – IJCAI '18



Impact of Efficiency

- Faster exploration
- Making feasible powerful "intractable" approaches
- More data
- Larger architectures
- New tasks

*SOA Accuracy will come from Efficient Models

UNIVERSITY OF OXFORD

SAMSUNG

Thanks! Questions?

Select Publications

- "An Empirical study of Binary Neural Networks' Optimisation" ICLR 2019
- "EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices" EMDL 2019
- "MobiSR: Efficient On-Device Super-Resolution through Heterogeneous Mobile Processors" MobiCom 2019
- "Mic2Mic: using cycle-consistent generative adversarial networks to overcome microphone variability in speech systems" IPSN 2019
- "The deep (learning) transformation of mobile and embedded computing" IEEE Computer Magazine, 51 (5), 2018
- "BinaryCmd: Keyword Spotting with Deterministic Binary Basis" SysML 2018
- "Deterministic binary filters for convolutional neural networks" IJCAI 2018
- "Multimodal Deep Learning for Activity and Context Recognition" UbiComp 2018
- "Accelerating Mobile Audio Sensing Algorithms through On-Chip GPU Offloading" MobiSys 2017
- "Squeezing Deep Learning into Mobile and Embedded Devices" IEEE Pervasive Magazine, 16 (3), 2017
- "Cross-modal recurrent models for weight objective prediction from multimodal time-series data" Pervasive Health 2018
- "Low-resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared Deep Neural Network Representations" UbiComp 2017
- "DeepEye: Resource Efficient Local Execution of Multiple Deep Vision Models using Wearable Commodity Hardware" MobiSys 2017
- "Sparsifying Deep Learning Layers for Constrained Resource Inference on Wearables" SenSys 2016
- "X-CNN: Cross-modal convolutional neural networks for sparse datasets" SSCI 2016
- "DXTK: Enabling resource-efficient deep learning on mobile and embedded devices with the deepx toolkit" MobiCASE 2016
- "LEO: Scheduling sensor inference algorithms across heterogeneous mobile processors and network resources" MobiCom 2016
- "From Smart to Deep: Robust Activity Recognition on Smartwatches using Deep Learning" WristSense 2016
- "Deepx: A software accelerator for low-power deep learning inference on mobile devices"— IPSN 2016
- "An early resource characterization of deep learning on wearables, smartphones and internet-of-things devices" IoTApp 2015
- "Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning" UbiComp 2015
- "Can Deep Learning Revolutionize Mobile Sensing?" HotMobile 2015